Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Disambiguation of authors in digital libraries is essential for many tasks, including efficient bibliographical searches and scientometric analyses to the level of individuals. The question of how to link documents written by the same person has been given much attention by academic publishers and information retrieval researchers alike. Usual approaches rely on publications’ metadata such as affiliations, email addresses, co-authors, or scholarly topics. Lack of homogeneity in the structure of bibliographic collections and discipline-specific dissimilarities between them make the creation of general-purpose disambiguators arduous. We present an algorithm to disambiguate authorships in the Astrophysics Data System (ADS) following an established semi-supervised approach of training a classifier on authorship pairs and clustering the resulting graphs. Due to the lack of high-signal features such as email addresses and citations, we engineer additional content- and location-based features via text embeddings and named-entity recognition. We train various nonlinear tree-based classifiers and detect communities from the resulting weighted graphs through label propagation, a fast yet efficient algorithm that requires no tuning. The resulting procedure reaches reasonable complexity and offers possibilities for interpretation. We apply our method to the creation of author entities in a recent ADS snapshot. The algorithm is evaluated on 39 manually-labeled author blocks comprising 9545 authorships from 562 author profiles. Our best approach utilizes the Random Forest classifier and yields a micro- and macro-averaged BCubed $$\mathrm {F}_1$$ F 1 score of 0.95 and 0.87, respectively. We release our code and labeled data publicly to foster the development of further disambiguation procedures for ADS.
Disambiguation of authors in digital libraries is essential for many tasks, including efficient bibliographical searches and scientometric analyses to the level of individuals. The question of how to link documents written by the same person has been given much attention by academic publishers and information retrieval researchers alike. Usual approaches rely on publications’ metadata such as affiliations, email addresses, co-authors, or scholarly topics. Lack of homogeneity in the structure of bibliographic collections and discipline-specific dissimilarities between them make the creation of general-purpose disambiguators arduous. We present an algorithm to disambiguate authorships in the Astrophysics Data System (ADS) following an established semi-supervised approach of training a classifier on authorship pairs and clustering the resulting graphs. Due to the lack of high-signal features such as email addresses and citations, we engineer additional content- and location-based features via text embeddings and named-entity recognition. We train various nonlinear tree-based classifiers and detect communities from the resulting weighted graphs through label propagation, a fast yet efficient algorithm that requires no tuning. The resulting procedure reaches reasonable complexity and offers possibilities for interpretation. We apply our method to the creation of author entities in a recent ADS snapshot. The algorithm is evaluated on 39 manually-labeled author blocks comprising 9545 authorships from 562 author profiles. Our best approach utilizes the Random Forest classifier and yields a micro- and macro-averaged BCubed $$\mathrm {F}_1$$ F 1 score of 0.95 and 0.87, respectively. We release our code and labeled data publicly to foster the development of further disambiguation procedures for ADS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.