In this paper, we report the synthesis, structure and electrical conductivity of Mo‐doped compounds with a nominal chemical formula of Ce1–xMoxO2+δ (x = 0.05, 0.07, 0.1) (CMO). The formation of fluorite‐like structure with a small amount of Ce8Mo12O49 impurity (JCPDS Card No. 31‐0330) was confirmed using a powder X‐ray diffraction (PXRD). The fluoride‐type structure was retained under wet H2 and CH4 atmospheres at 700 and 800 °C, while diffraction peaks due to metal Mo were observed in dry H2 under the same condition. AC impedance measurements showed that the total conductivity increases with increasing Mo content in CMO, and among the investigated samples, Ce0.9Mo0.1O2+δ exhibited the highest electrical conductivity with a value of 2.8 × 10–4 and 5.08 × 10–2 S cm–1 at 550 °C in air and wet H2, respectively. The electrical conductivity was found to be nearly the same, especially at high temperatures, in air, O2 and N2. Chemical compatibility of Ce0.9Mo0.1O2+δ with 10 mol‐% Y2O3 stabilised ZrO2 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) oxide ion electrolytes in wet H2 was evaluated at 800–1,000 °C, using PXRD and EDX analyses. PXRD showed that CMO was found to react with YSZ electrolyte at 1,000 °C. The area specific polarisation resistance (ASPR) of Ce0.9Mo0.1O2+δ on YSZ was found to be 8.58 ohm cm2 at 800 °C in wet H2.