Additive Manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature variations on moon or other planets which cause changes in parts’ strengths and may fail their operation. Therefore, the correlation between operational temperature and mechanical properties of AM fabricated parts should be evaluated. In this study, three different types of polymers, including polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used in Fused Deposition Modeling (FDM) process to fabricate several parts. The mechanical properties of produced parts were then investigated at various temperatures to generate knowledge on the correlation between temperature and type of material. When varying the operational temperature during tensile tests, the material’s glass transition temperature was found influential in determining the type of material failure. Among the materials used, ABS showed the best mechanical properties at all temperatures due to its highest glass transition temperatures. The results of statistical analysis indicated the temperature as the significant factor on tensile strength while the type of material was not a significant factor.