Background
Alcoholic liver disease (ALD) is one of the most prevalent chronic liver disease worldwide. Alcohol-induced alterations in hepatic lipids play an important role in ALD develpoment and progression. The present study aimed to thoroughly describe the changes of lipid profiling in liver of mice with early-stage alcoholic liver disease.
Methods
C57BL/6J male mice aged 7-week were randomized into alcohol-fed (AF) group and pair-fed control group (PF) (n = 10 per group). The early stage of ALD was induced with Lieber-DeCarli liquid diet. The lipids profiling was analyzed by absolute quantitative lipidomics with UHPLC-QTRAP-MS/MS.
Results
Alcohol intake significantly increased the levels of alanine aminotransferase (ALT) in plasma, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and triacylglycerols (TAG) levels in liver. Lipidomis analyses showed that 41 TAGs were up-regulated and 8 TAGs were down-regulated in response to alcohol intake. The 8 decreased TAGs were with more double bond, longer carbon chain length and mostly contained docosahexaenoic acid (C22:6n-3) and eicosapentaenoic acid (C20:5n-3), compared with the up-regulated TAGs. Furthermore, the down-regulated TAG(56:9)_FA20:5 was inversely associated with ALT and IL-6 levels. In addition, several altered lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE) and hexosylceramides (HCER) were all significantly decreased in response to alcohol consumption, especially HCer(18:1/22:0), with the top reduction among all the down-regulated lipids.
Conclusions
These findings suggest that not only the up-regulated lipids, alcohol-induced reduction in some specific lipids might also contribute to the ALD development, especially TAG(56:9)_FA20:5 and HCer(18:1/22:0). Their physiological functions and effects on ALD development warrants further investigation.