BackgroundThe randomized clinical trial, SafeBoosC II, examined the effect of monitoring of cerebral oxygenation by near-infrared spectroscopy combined with a guideline on treatment when cerebral oxygenation was out of the target range. Data on cerebral oxygenation was collected in both the intervention and the control group. The primary outcome was the reduction in the burden of cerebral hypo- and hyperoxia between the two groups. In this study we describe the associations between the burden of cerebral hypo- and hyperoxia, regardless of allocation to intervention or control group, and the biomarkers of brain injury from birth till term equivalent age that was collected as secondary and explorative outcomes in the SafeBoosC II trial.MethodsCerebral oxygenation was continuously monitored during the first 72h of life in 166 extremely preterm infants. Cranial ultrasound was performed at day 1,4,7,14, and 35 and at term. Electroencephalogram (EEG) was recorded at 64h. Blood-samples taken at 6 and 64 hours were analysed for the brain injury biomarkers; S100beta, brain-fatty-acid-binding-protein, and neuroketal. All analyses were conducted post hoc.ResultsSignificantly more infants with a cerebral burden of hypoxia within the 4th quartile versus infants within quartile 1–3 were diagnosed with severe intracranial haemorrhage (11/39 versus 11/117, p = 0.003), had low burst rate on EEG (12/28 versus 21/103, p = 0.015), or died (14/41 versus 18/123, p = 0.006), whereas none of these events were significantly associated with cerebral hyperoxia. The blood biomarkers were not significantly associated with the burden of cerebral hypo- or hyperoxia.ConclusionsThe explorative analysis showed that early burden of cerebral hypoxia, but not hyperoxia was significantly associated with low brain electrical activity and severe intracranial haemorrhage while none of the three blood biomarkers were associated with the burden of either cerebral hypo- or hyperoxia.