Background and ObjectivesPreviously we demonstrated that 90% of infarcts in children with sickle cell anemia occur in the border zone regions of cerebral blood flow (CBF). We tested the hypothesis that adults with sickle cell disease (SCD) have silent cerebral infarcts (SCIs) in the border zone regions, with a secondary hypothesis that older age and traditional stroke risk factors would be associated with infarct occurrence in regions outside the border zones.
MethodsAdults with SCD 18-50 years of age were enrolled in a cross-sectional study at 2 centers and completed a 3T brain MRI. Participants with a history of overt stroke were excluded. Infarct masks were manually delineated on T2-fluid-attenuated inversion-recovery MRI and registered to the Montreal Neurological Institute 152 brain atlas to generate an infarct heatmap. Border zone regions between anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA) were quantified using the Digital 3D Brain MRI Arterial Territories Atlas, and logistic regression was applied to identify relationships between infarct distribution, demographics, and stroke risk factors.
ResultsOf 113 participants with SCD (median age 26.1 years, interquartile range [IQR] 21.6-31.4 years, 51% male), 56 (49.6%) had SCIs. Participants had a median of 5.5 infarcts ). Analysis of infarct distribution showed that 350 of 644 infarcts (54.3%) were in 4 border zones of CBF and 294 (45.6%) were in non-border zone territories. More than 90% of infarcts were in 3 regions: the non-border zone ACA and MCA territories and the ACA-MCA border zone. Logistic regression showed that older participants have an increased chance of infarcts in the MCA territory (odds ratio [OR] 1.08; 95% CI 1.03-1.13; p = 0.001) and a decreased chance of infarcts in the ACA-MCA border zone (OR 0.94; 95% CI 0.90-0.97; p < 0.001). The presence of at least 1 stroke risk factor did not predict SCI location in any model.
DiscussionWhen compared with children with SCD, in adults with SCD, older age is associated with expanded zones of tissue infarction that stretch beyond the traditional border zones of CBF, with more than 45% of infarcts in non-border zone regions.