Cerebrospinal fluid diversion via ventricular shunting is the prevailing contemporary treatment for hydrocephalus. The CSF shunt appeared in its current form in the 1950s, and modern CSF shunts are the result of 6 decades of significant progress in neurosurgery and biomedical engineering. However, despite revolutionary advances in material science, computational design optimization, manufacturing, and sensors, the ventricular catheter (VC) component of CSF shunts today remains largely unchanged in its functionality and capabilities from its original design, even though VC obstruction remains a primary cause of shunt failure. The objective of this paper is to investigate the history of VCs, including successful and failed alterations in mechanical design and material composition, to better understand the challenges that hinder development of a more effective design.