OBJECTIVE
This article provides a review of the initial clinical and radiologic evaluation and treatment of patients with traumatic spinal cord injuries. It specifically highlights essential knowledge for neurologists who encounter patients with these complex injuries.
LATEST DEVELOPMENTS
There has been improvement in the care of patients with traumatic spinal cord injuries, particularly in the prehospital evaluation, approach for immediate immobilization, standardized spinal clearance, efficient triage, and transportation of appropriate patients to traumatic spinal cord injury specialized centers. Advancements in spinal instrumentation have improved the surgical management of spinal fractures and the ability to manage patients with spinal mechanical instability. The clinical evidence favors performing early surgical decompression and spine stabilization within 24 hours of traumatic spinal cord injuries, regardless of the severity or location of the injury. There is no evidence that supports the use of neuroprotective treatments to improve outcomes in patients with traumatic spinal cord injuries. The administration of high-dose methylprednisolone, which is associated with significant systemic adverse effects, is strongly discouraged. Early and delayed mortality rates continue to be high in patients with traumatic spinal cord injuries, and survivors often confront substantial long-term physical and functional impairments. Whereas the exploration of neuroregenerative approaches, such as stem cell transplantation, is underway, these methods remain largely investigational. Further research is still necessary to advance the functional recovery of patients with traumatic spinal cord injuries.
ESSENTIAL POINTS
Traumatic spinal cord injury is a complex and devastating condition that leads to long-term neurologic deficits with profound physical, social, and vocational implications, resulting in a diminished quality of life, particularly for severely affected patients. The initial management of traumatic spinal cord injuries demands comprehensive interdisciplinary care to address the potentially catastrophic multisystem effects. Ongoing endeavors are focused on optimizing and customizing initial management approaches and developing effective therapies for neuroprotection and neuroregeneration to enhance long-term functional recovery.