There is a fundamental issue in the launching system with the modular charge technology, which is an unsteady gas–solid flow in the sequence-change space within a short period of time. It leads to complex particle behavior, causing the strong pulsation of particle energy released during the combustion process. As a result, a large initial pressure wave is generated, which damages the launching stability. In this work, a 3D gas–solid flow model is developed based on the computational fluid dynamics–discrete element method (CFD-DEM) model to analyze the particle behavior in the launching system with different numbers of modules. The rationality of the model is verified through the experiment. It is found that the particles near the cover of the rightmost module move out of the module rapidly and collide with the right face of the chamber, forming a retained particle layer. When particles are stationary, the distribution of particles consists of slope accumulations and horizontal accumulation. With the increase in the module number, the position changes of all tracer particles are decreased, both the thickness and the length of the horizontal shape are increased, the variation laws of the slope stack height change from exponential to linear, and the distribution of particles becomes uniform.