2010
DOI: 10.1016/j.biortech.2010.03.146
|View full text |Cite
|
Sign up to set email alerts
|

CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
70
0
3

Year Published

2011
2011
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 171 publications
(74 citation statements)
references
References 33 publications
1
70
0
3
Order By: Relevance
“…Figure 6(b) shows that small bubbles exist in the impeller outflow region. A previous study (Ding et al, 2010) has found that impellers generate high turbulent kinetic energy. Hence, bubbles can easily break and transfer in the outlet of the impeller region.…”
Section: Bubble Sizementioning
confidence: 93%
“…Figure 6(b) shows that small bubbles exist in the impeller outflow region. A previous study (Ding et al, 2010) has found that impellers generate high turbulent kinetic energy. Hence, bubbles can easily break and transfer in the outlet of the impeller region.…”
Section: Bubble Sizementioning
confidence: 93%
“…The advancement of computer performance in the last decades has enabled the prediction of flow fields and improved mixing performance in anaerobic digesters. Ding et al (2010) presented three-dimensional CFD simulations of a gas-liquid two-phase flow agitated by a mechanical impeller in a lab-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. It has been shown that the impeller type and speed significantly affect flow patterns: the relation between hydrodynamics and biohydrogen production indicated that an impeller operating at speeds between 50 and 70 rpm provided better reactor performance.…”
Section: Introductionmentioning
confidence: 99%
“…It has been shown that the impeller type and speed significantly affect flow patterns: the relation between hydrodynamics and biohydrogen production indicated that an impeller operating at speeds between 50 and 70 rpm provided better reactor performance. Wang et al (2010) introduced the CFD methodology developed by Ding et al (2010) into the investigation of scale-up mechanisms for the CSTR, and indicated that parameters such as velocity field and stagnation zone needed to be optimized in industrial-scale reactors. Yu et al (2013) associated the multi-fluid model with the Kinetic Theory of Granular Flow (KTGF) and Anaerobic Digestion Model no.1 (ADM1) to improve the performance of an anaerobic digester, where settling and suspension are very important phenomena to retain biomass.…”
Section: Introductionmentioning
confidence: 99%
“…Ding et al (2010) presentaron simulaciones tridimensionales en CFD de un flujo gas-líquido y agitado por un impulsor mecánico en un Reactor Continuo de Tanque Agitado (CSTR) utilizado para la producción de hidrógeno. Wang et al (2010) utilizaron la metodología CFD desarrollada por Ding et al (2010) en la investigación de los mecanismos para ampliación de tamaño de los CSTRs, e indicaron que parámetros como el campo de velocidad y zonas de estancamiento necesitan ser mejorados para lograr la escala industrial.…”
Section: Introductionunclassified
“…Ding et al (2010) presentaron simulaciones tridimensionales en CFD de un flujo gas-líquido y agitado por un impulsor mecánico en un Reactor Continuo de Tanque Agitado (CSTR) utilizado para la producción de hidrógeno. Wang et al (2010) utilizaron la metodología CFD desarrollada por Ding et al (2010) en la investigación de los mecanismos para ampliación de tamaño de los CSTRs, e indicaron que parámetros como el campo de velocidad y zonas de estancamiento necesitan ser mejorados para lograr la escala industrial. Yu et al (2013) asociaron el modelo de fluidos múltiples con la Teoría Cinética del Flujo Granular (KTGF) y el Modelo de Digestión Anaeróbica Nº 1 (ADM1) para mejorar el rendimiento de un digestor anaerobio, para el cual la sedimentación es un fenómeno muy importante para retener la biomasa.…”
Section: Introductionunclassified