Surrogate (metamodel) based optimization has numerous potential applications in the field of naval architecture. It is aimed here to establish a methodology for the aft form optimization for minimum viscous resistance, thus the present study is focused on the aft form where the viscous effects become dominant. It is necessary to solve this problem within acceptable time span from practical naval architectural point of view which requires metamodeling techniques currently under investigation. Accordingly, the present paper investigates the metamodeling ability of the Kriging interpolation and attempts to explore its capabilities and limitations in the aft form optimization from viscous resistance point of view. As metamodeling techniques become more widely used, their constraints are more apparent. Especially in highly nonlinear design spaces, the effect of dimensionality should be taken into consideration. Taking all those factors into account, the present paper is to examine the capabilities of Kriging and to establish the learning performance in terms of RMS error, correlation coefficient and required number of training points according to selected optimization algorithm for multidimensional ship design problem. The results show that, at least 5% reduction in viscous pressure drag can be attained by the present optimization methodology.