2023
DOI: 10.3389/feart.2023.1223686
|View full text |Cite
|
Sign up to set email alerts
|

CFM: a convolutional neural network for first-motion polarity classification of seismic records in volcanic and tectonic areas

Abstract: First-motion polarity determination is essential for deriving volcanic and tectonic earthquakes’ focal mechanisms, which provide crucial information about fault structures and stress fields. Manual procedures for polarity determination are time-consuming and prone to human error, leading to inaccurate results. Automated algorithms can overcome these limitations, but accurately identifying first-motion polarity is challenging. In this study, we present the Convolutional First Motion (CFM) neural network, a labe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 53 publications
0
0
0
Order By: Relevance