2019
DOI: 10.20311/stat2019.7.hu0656
|View full text |Cite
|
Sign up to set email alerts
|

CHAID-alapú felülvizsgált kategorizálás a csődelőrejelzésben

Abstract: Az alábbi feltételek érvényesek minden, a Központi Statisztikai Hivatal (a továbbiakban: KSH) Statisztikai Szemle c. folyóiratában (a továbbiakban: Folyóirat) megjelenő tanulmányra. Felhasználó a tanulmány vagy annak részei felhasználásával egyidejűleg tudomásul veszi a jelen dokumentumban foglalt felhasználási feltételeket, és azokat magára nézve kötelezőnek fogadja el. Tudomásul veszi, hogy a jelen feltételek megszegéséből eredő valamennyi kárért felelősséggel tartozik.1. A jogszabályi tartalom kivételével a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Applying ten-fold cross-validation the developed DA, logit and decision tree models showed that dynamized variables improved classification accuracy compared to models developed from the original static variables. In addition, it was demonstrated by Nyitrai (2019a) that creating categorical variables from the number of nodes of CHAID decision trees coming from subsequent years arrived at better predictive power compared to the approach by using the original data as input variables.…”
Section: Dynamization and Through-the-cycle Modelingmentioning
confidence: 99%
“…Applying ten-fold cross-validation the developed DA, logit and decision tree models showed that dynamized variables improved classification accuracy compared to models developed from the original static variables. In addition, it was demonstrated by Nyitrai (2019a) that creating categorical variables from the number of nodes of CHAID decision trees coming from subsequent years arrived at better predictive power compared to the approach by using the original data as input variables.…”
Section: Dynamization and Through-the-cycle Modelingmentioning
confidence: 99%