2001
DOI: 10.1017/s0017089501010096
|View full text |Cite
|
Sign up to set email alerts
|

Chain-finite operators and locally chain-finite operators

Abstract: We give algebraic conditions characterizing chain-finite operators and locally chain-finite operators on Banach spaces. For instance, it is shown that T is a chain-finite operator if and only if some power of T is relatively regular and commutes with some generalized inverse; that is there are a bounded linear operator B and a positive integer k such that TkBTk =Tk and TkB=BTk. Moreover, we obtain an algebraic characterization of locally chain-finite operators similar to (1).

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?