Background
Sleep is beneficial for physical and mental health. Several mobile and wearable sleep-tracking devices have been developed, and personalized sleep feedback is the most common functionality among these devices. To date, no study has implemented an objective push-type feedback message and investigated the characteristics of habitual sleep behavior and diurnal symptoms when receiving sleep feedback.
Objective
We conducted a mobile health intervention trial to examine whether sending objective push-type sleep feedback changes the self-reported mood, physical symptoms, and sleep behavior of Japanese office workers.
Methods
In total, 31 office workers (mean age 42.3, SD 7.9 years; male-to-female ratio 21:10) participated in a 2-arm intervention trial from November 30 to December 19, 2020. The participants were instructed to indicate their momentary mood and physical symptoms (depressive mood, anxiety, stress, sleepiness, fatigue, and neck and shoulder stiffness) 5 times a day using a smartphone app. In addition, daily work performance was rated once a day after work. They were randomly assigned to either a feedback or control group, wherein they did or did not receive messages about their sleep status on the app every morning, respectively. All participants wore activity monitors on their nondominant wrists, through which objective sleep data were registered on the web on a server. On the basis of the estimated sleep data on the server, personalized sleep feedback messages were generated and sent to the participants in the feedback group using the app. These processes were fully automated.
Results
Using hierarchical statistical models, we examined the differences in the statistical properties of sleep variables (sleep duration and midpoint of sleep) and daily work performance over the trial period. Group differences in the diurnal slopes for mood and physical symptoms were examined using a linear mixed effect model. We found a significant group difference among within-individual residuals at the midpoint of sleep (expected a posteriori for the difference: −15, 95% credible interval −26 to −4 min), suggesting more stable sleep timing in the feedback group. However, there were no significant group differences in daily work performance. We also found significant group differences in the diurnal slopes for sleepiness (P<.001), fatigue (P=.002), and neck and shoulder stiffness (P<.001), which was largely due to better scores in the feedback group at wake-up time relative to those in the control group.
Conclusions
This is the first mobile health study to demonstrate that objective push-type sleep feedback improves sleep timing of and physical symptoms in healthy office workers. Future research should incorporate specific behavioral instructions intended to improve sleep habits and examine the effectiveness of these instructions.