Food waste diversion and composting, either mandated or voluntary, are growing alternatives to traditional waste disposal. An acceptable source of agricultural feed and composting material, methane-emitting food residuals, including post-consumer food scraps, are diverted from landfills allowing recapture of nutrients that would otherwise be lost. However, risk associated with the transfer of antimicrobial resistant bacteria (ARB), antibiotic resistance genes (ARGs), or pathogens from food waste is not well characterized. Using shotgun metagenomic sequencing, ARGs, microbial content, and associated virulence factors were successfully identified across samples from an integrated poultry farm that feeds post-consumer food waste. A total of 495 distinct bacterial species or sub-species, 50 ARGs, and 54 virulence gene sequences were found. ARG sequences related to aminoglycoside, tetracycline, and macrolide resistance were most prominent, while most virulence gene sequences were related to transposon or integron activity. Microbiome content was distinct between on-farm samples and off-farm food waste collection sites, with a reduction in pathogens throughout the composting process. While most samples contained some level of resistance, only 3 resistance gene sequences occurred in both on- and off-farm samples and no multidrug resistance (MDR) gene sequences persisted once on the farm. The risk of incorporating novel or multi-drug resistance from human sources appears to be minimal and the practice of utilizing post-consumer food scraps as feed for poultry and composting material may not present a significant risk for human or animal health. Pearson correlation and co-inertia analysis identified a significant interaction between resistance and virulence genes (P = 0.05, RV = 0.67), indicating that ability to undergo gene transfer may be a better marker for ARG risk than presence of specific bacterial species. This work expands the knowledge of ARG fate during food scrap animal feeding and composting and provides a methodology for reproducible analysis.