Fragment molecular orbital (FMO) calculations were performed for explicitly solvated single-stranded DNA (ssDNA), ssDNA binding protein, and their complex in order to assess the solvent effects on the solutes and thereby to find optimal solvation conditions for FMO calculation. A series of solvated structures were generated with different solvent thicknesses. The structures were subjected to FMO calculation at MP2/6-31G* to obtain the net charges and internal energies of the solutes and the solute-solvent interaction energies as functions of the solvent thickness. In all cases, the properties showed complete or marginal convergence at ca. 6 Ǻ, regardless whether or not the system charge was neutralized. This suggested that the first and second solvent shells mainly determine the electronic structure of a solute while the outer solvent including ions has only minor effects, consistent with several preceding reports. In light of this, and considering safety as a factor, we conclude that a solvent shell thickness of ca. 8 Ǻ suffices for FMO calculation of the solutes.