2022
DOI: 10.1017/pan.2022.23
|View full text |Cite
|
Sign up to set email alerts
|

Change-Point Detection and Regularization in Time Series Cross-Sectional Data Analysis

Abstract: Researchers of time series cross-sectional data regularly face the change-point problem, which requires them to discern between significant parametric shifts that can be deemed structural changes and minor parametric shifts that must be considered noise. In this paper, we develop a general Bayesian method for change-point detection in high-dimensional data and present its application in the context of the fixed-effect model. Our proposed method, hidden Markov Bayesian bridge model, jointly estimates high-dimen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 89 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?