The range of colours of many flowers and fruits is largely due to variations in the types of anthocyanins produced. The degree of hydroxylation on the B-ring affects the hue of these pigments, causing a shift from the orange end of the visible spectrum to the blue end. Besides colour, this modification can also affect other properties of anthocyanins, including the ability to protect the plant against different stresses or, when included in the human diet, to provide benefits for disease prevention. The level of hydroxylation of the B-ring is determined by the activity of two key hydroxylases, F3′H and F3′5′H, and by the substrate preference of DFR, an enzyme acting downstream in the biosynthetic pathway. We show that, in tomato, a strategy based on fruit-specific engineering of three regulatory genes (AmDel, AmRos1, AtMYB12) and a single biosynthetic gene (AmDFR), together with the availability of a specific mutation (f3′5′h), results in the generation of three different varieties producing high levels of anthocyanins with different levels of hydroxylation. These tomatoes show distinctive colours and mimic the classes of anthocyanins found in natural berries, thus providing unique near-isogenic material for different studies.