Early (instar I and II) juveniles of the spider crab Hyas araneus were reared under constant conditions (12 ~ 32 ~'~S} in the laboratory, and their growth, biochemical composition, and respiration were studied. Every second day, dry weight (W), ash-free dry weight (AFW}, and contents of ash, organic and inorganic carbon (C), nitrogen (N), hydrogen (H}, protein, chitin, lipid, and carbohydrates were measured, as well as oxygen consumption. Changes in the absolute amounts of W, APW, and C, N, and H during the moulting cycle are described with various regression equations as functions of age within a given instar. These patterns of growth differ in part from those that have been observed during previous studies in larval stages of the same and some other decapod species, possibly indicating different growth strategies in larvae and juveniles. There were clear periodic changes in ash (% of W} and inorganic C {as % of total C}, with initially very low and then steeply increasing values in postmoult, a maximum in intermoult, and decreasing figures during the premoult phase of each moulting cycle. Similar patterns were observed in the chitin fraction, reaching a maximum of 16 % of W (31% of AFW). Ash, inorganic C, and chitin represent the major components of the exoskeleton and hence, changes in their amounts are associated with the formation and loss of cuticle material. Consequently, a high percentage of mineral matter was lost with the exuvia (76 % of the late premoult [LPM] ash content, 74 % of inorganic C}, but relatively small fractions of LPM organic matter (15 % of APW, 11% of organic C, 5-6 % of N and H}. These cychc changes in the cuticle caused an inverse pattern of variation in the percentage values (% of W} of AFt/, organic C, N, H, and biochemical constituents other than chitin. When these measures of living biomass were related to, exclusively, the organic body fraction (AFW), much less variation was found during individual moulting cycles, with values of about 43-52 % in organic C, 9-10 % in N, 6-9% H, 31-49% of AFW in protein, 3-10% in lipid, and < 1% in carbohydrates. All these constituents showed, on the average, a decreasing tendency during the first two crab instars, whereas N remained fairly constant. It cannot be explained at present, what other elements and biochemical compounds, respectively, might replace these decreasing components of AFW. Decreasing tendencies during juvenile growth were observed also in the organic C/N and in the lipid/protein weight ratios, both indicating that the proportion of lipid decreased at a higher rate than that of protein. Changes were observed also in the composition of inorganic matter, with significantly lower inorganic C in early postmoult (2-4 % of ash} than in later stages of the moult cycle (about 9 %}. This reflected probably an increase in the degree of calcification, i.e. in the calcium carbonate content of the exoskeleton. As a fraction of total C, inorganic C reached maximum values of 17 and 20 % in the crab I and II instars, respectively. T...