When a concrete structure is exposed to fire, its structural safety is significantly compromised due to the spalling of members and scaling of concrete. In addition, its durability is substantially reduced due to certain chemical changes such as the dehydration of Ca(OH)2, the main hydration product of concrete, and the rehydration of CaO. Therefore, when fire damage occurs to a reinforced concrete (RC) building, rapid diagnosis and evaluation techniques are required for immediate repair and reinforcement, requiring a crucial step of quantitatively determining the heating temperature. This study aims to demonstrate a method of estimating the heating temperature experienced by fire damaged RC buildings. The experiments utilized two short RC column specimens with embedded titanium strips. The discoloration characteristics of titanium at high temperatures provided a quick, accurate, and simple mechanism for the estimation of the heating temperature by depth. Empirical equations were derived to estimate the heating temperature as a function of the discoloration characteristics of titanium. Thereafter, a comparison of this estimated temperature with the actual heating temperature measured using thermocouples revealed an average error of less than 20 °C, thereby demonstrating a significantly good correlation and an extremely high reliability of the proposed method.