Based on area P lesion experiments, we hypothesized that tongue protrusion adapted for licking might be regulated by the lateral wall of the presylvian sulcus (bilateral areas P) of the cerebral cortex (Hiraba H, Sato T, Nakakawa K, Ueda K. 2009. Cortical control of appropriate tongue protrusion during licking in cats--Increase in regional cerebral blood flow (rCBF) of the contralateral area P and in tongue protrusion after the unilateral area P lesion. Somatosens Mot Res 26:82-89). We propose that the right and left lingual muscles are dominated by the right and left hypoglossal nucleus, respectively, and that right and left pyramidal cells projecting to the right and left hypoglossal nucleus, respectively, exist in unilateral area P. These cells project via an inhibitory interneuron relay to the lateral branches toward the left or right pyramidal cells in contralateral area P. In this study, we aimed to demonstrate the existence of inhibitory interneurons using injections of a gamma-aminobutyric acid (GABA) agonist (muscimol), a GABA antagonist (bicuculline), and kainic acid into unilateral area P, followed by examination of tongue protrusion and lateral movements during trained licking and changes in regional cerebral blood flow (rCBF) values in the contralateral area P. We found disordered protrusion toward both sides and a marked decrease in rCBF values in the contralateral area P after bicuculline injection. We also found abnormal tongue protrusion toward the front and a marked increase in rCBF values after muscimol and kainic acid injections. These results suggest that cortical networks between the bilateral areas P are relayed by inhibitory interneurons.