Diffusion characteristics of iron and nickel atoms were investigated using radioactive isotopes method in phase-hardened metastable iron-nickel Fe-31.7%Ni-0.06%C alloy with nanofragmented structure. It has been found that diffusion mobility of nickel and iron atoms in reverted austenite of Fe-31.7%Ni-0.06%C alloy significantly increases as the result of multiple γ-α-γ martensitic transformations. The diffusion coefficients of nickel and iron in the austenite at 400°C corresponded to the stationary diffusion coefficients at the temperatures above 900°C. The revealed diffusion acceleration at low temperatures is caused by high-density dislocations and additional low-angle subboundaries of disoriented nanofragments of reverted austenite and deformation twin subboundaries formed during multiple γ-α-γ cycles.