Nerve injury-induced neuropathic pain remains a challenging clinical problem due to a lack of satisfactory treatment. Pain after BPA (Brachial Plexus Avulsion) is resistant to most traditional pain relief treatments due to the lack of understanding of the cellular or molecular mechanism of pain development. The present study aimed to investigate the expression of mRNA in the brachial plexus avulsion neuropathic pain model and analyze biological functions. Sprague-Dawley rats were treated with complete brachial plexus avulsion. An animal behavior test was carried out to distinguish the pain group from the control group. In this study, a microarray mRNA assay and reverse transcriptase quantitative polymerase chain reaction (RT-PCR) was conducted. The whole blood was collected from two groups for Microarray mRNA analysis. The predicted mRNA targets were studied by gene ontology analysis and pathway analysis. The PIK3CB, HRAS, and JUN genes were verified by RT-PCR. In total, differentially expressed genes(DEGs) were identified between individuals with or without neuropathic pain (case and control), and A biological processes were enriched. We identified 3 targeted mRNAs, including PIK3CB, HRAS, and JUN, which may be potential biomarkers for BPA-caused NP. The results showed that PIK3CB, HRAS, and JUN gene expression was increased in the control group but decreased in the neuropathic pain group. The PIK3CB gene was part of the Neurotrophin signaling pathway. The function of the HRAS gene was synergetic in the aspect of axon guidance and the Neurotrophin signaling pathway. The JUN gene participates in axon regeneration. These results suggest that PIK3CB, HRAS, and JUN genes might become potential biomarkers for the prediction of and new targets for the prevention and treatment of neuropathic pain after BPA. These findings indicate that mRNA expression changes in the blood may play an important role in the development of NP after BPA, which is of theoretical and clinical importance for future research and clinical-treatment strategies.