Autophagy is the principal cellular pathway for degradation of long-lived proteins and organelles and regulates cell fate in response to stress. Recently, autophagy has been implicated in neurodegeneration, but whether it is detrimental or protective remains unclear. Here we report that beclin 1, a protein with a key role in autophagy, was decreased in affected brain regions of patients with Alzheimer disease (AD) early in the disease process. Heterozygous deletion of beclin 1 (Becn1) in mice decreased neuronal autophagy and resulted in neurodegeneration and disruption of lysosomes. In transgenic mice that express human amyloid precursor protein (APP), a model for AD, genetic reduction of Becn1 expression increased intraneuronal amyloid β (Aβ) accumulation, extracellular Aβ deposition, and neurodegeneration and caused microglial changes and profound neuronal ultrastructural abnormalities. Administration of a lentiviral vector expressing beclin 1 reduced both intracellular and extracellular amyloid pathology in APP transgenic mice. We conclude that beclin 1 deficiency disrupts neuronal autophagy, modulates APP metabolism, and promotes neurodegeneration in mice and that increasing beclin 1 levels may have therapeutic potential in AD.
IntroductionFamilial Alzheimer disease (AD) mutations increase the toxicity and amyloidogenicity of the amyloid β (Aβ) peptide, placing disruption of amyloid precursor protein (APP) metabolism and Aβ production at the center of AD pathogenesis (1). However, less than 2% of AD cases are caused by autosomal-dominant mutations. Familial AD caused by these mutations and the remaining nondominant sporadic AD cases are pathologically similar. Therefore, factors that disrupt APP metabolism and Aβ production, such as increased APP transcription, increased production of amyloidogenic Aβ (2), and decreased APP degradation, may contribute to the pathogenesis of sporadic AD as well.The etiology of AD is distinct from that of other neurodegenerative diseases, such as Parkinson disease and Huntington disease (HD), but all are characterized pathologically by the presence of abnormal protein aggregates and neuronal death (3, 4). Protein aggregates may form by abnormal folding or proteolytic processing of proteins or by the disturbance of intracellular protein degradation pathways (3,5). Autophagy is involved in the intracellular degradation of aggregation-prone α-synuclein (6) and huntingtin