Metalloids represent a wide range of elements with intermediate physiochemical properties between metals and non-metals. Many of the metalloids, like boron, selenium, and silicon are known to be essential or quasi-essential for plant growth. In contrast, metalloids viz. arsenic and germanium are toxic to plant growth. The toxicity of metalloids largely depends on their concentration within the living cells. Some elements, at low concentration, may be beneficial for plant growth and development; however, when present at high concentration, they often exert negative effects. In this regard, understanding the molecular mechanisms involved in the uptake of metalloids by roots, their subsequent transport to different tissues and inter/intra-cellular redistribution has great importance. The mechanisms of metalloids' uptake have been well studied in plants. Also, various transporters, as well as membrane channels involved in these processes, have been identified. In this review, we have discussed in detail the aspects concerning the positive/negative effects of different metalloids on plants. We have also provided a thorough account of the uptake, transport, and accumulation, along with the molecular mechanisms underlying the response of plants to these metalloids. Additionally, we have brought up the previous theories and debates about the role and effects of metalloids in plants with insightful discussions based on the current knowledge.