Healthy humans are proficient at maintaining stability when faced with diverse walking conditions, however, the control strategies that lead to this proficiency are unclear. Previous laboratory-based research has predominantly concluded that corrective stepping is the main strategy, but whether this finding holds when facing everyday obstacles outside of the laboratory is uncertain. We investigated changes in gait stability behaviour when walking outdoors in the summer and winter, hypothesizing that as ground conditions worsened in the winter, the stepping strategy would be hindered. Stability would then be maintained through compensatory strategies such as with ankle torques and trunk rotation. Data was collected in the summer and winter using inertial measurement units to collect kinematics and instrumented insoles to collect vertical ground reaction forces. Using the goodness of fit for a multivariate regression between the centre of mass state and foot placement we found that, counter to our hypothesis, stepping was not hindered by winter conditions. Instead, the stepping strategy was modified to increase the anterior-posterior margin of stability, increasing the resistance to a forward loss of stability. With stepping being unhindered, we did not observe any additional compensation from the ankle or trunk strategies.