Understanding the effects of stand age and forest type on soil respiration is crucial for predicting the potential of soil carbon sequestration. Thus far, however, there is no consensus regarding the variations in soil respiration caused by stand age and forest type. This study investigated soil respiration and its temperature sensitivity at three stand ages (5, 10, and 20 or 30 years) in two plantations of coniferous (Pinus tabulaeformis Carrière) and deciduous (Populus davidiana Dode) species using an automated chamber system in 2013 in the Beijing-Tianjin sandstorm source area. Results showed that mean soil respiration in the 5-, 10-, and 20/30-year-old plantations was 3.37, 3.17, and 2.99 µmol¨m´2¨s´1 for P. tabulaeformis and 2.92, 2.85, and 2.57 µmol¨m´2¨s´1 for P. davidiana, respectively. Soil respiration decreased with stand age for both species. There was no significant difference in soil respiration between the two plantation species at ages 5 and 10 years (p > 0.05). Temperature sensitivity of soil respiration, which ranged from 1.85-1.99 in P. tabulaeformis and 2.20-2.46 in P. davidiana plantations, was found to increase with stand age. Temperature sensitivity was also significantly higher in P. davidiana plantations and when the soil water content was below 12.8%. Temperature sensitivity incorporated a combined response of soil respiration to soil temperature, soil water content, soil organic carbon, and fine root biomass and, thus, provided an ecological metric for comparing forest carbon dynamics of these species.