Transferrin (Tf), the iron transport glycoprotein found in biological fluids of vertebrates, is synthesized mainly by hepatocytes. Tf is also synthesized by oligodendrocytes (Ol), and several lines of evidence indicate that brain Tf could be involved in myelinogenesis. Because Tf is postnatally expressed in the brain, we sought to investigate whether Tf could intervene in Ol differentiation. For this purpose, we analyzed transgenic mice overexpressing the complete human Tf gene in Ol. We show that the hTf transgene was expressed only from 5 days postpartum onward. In the brain of 14-day-old transgenic mice, the DM-20 mRNA level was decreased, whereas the PLP, MBP, CNP, and MAG mRNA levels were increased. We counted a higher proportion of Ol expressing the O4 (Ol-specific antigens) and PLP in brain cells cultured from transgenic mice. These results support the idea that overexpressing Tf in the brain accelerates the oligodendrocyte lineage maturation. Accordingly, by NMR imaging acquisition of diffusion tensor in hTf transgenic mice, we observed early maturation of the cerebellum and spinal cord and more myelination in the corpus callosum. In addition, hTf overexpression led to an increase in Sox10 mRNA and protein. Increases in Sox10 and in Tf expression occur simultaneously during brain development. The Olig1 mRNA level also increased, but long after the rise of hTf and Sox10. The Olig2 mRNA level remained unchanged in the brain of transgenic mice. Our findings suggest that Tf could influence oligodendrocyte progenitor differentiation in the CNS.