Abstract. Abstract. In this study, the fine-scale responses of a stratified oligotrophic karstic lake (Kozjak, Plitvice Lakes, Croatia; lake fetch is 2.3 km and maximum depth is 46 m) to atmospheric forcings on the lake surface are investigated. Lake temperatures measured at a resolution of 2 min at 15 depths ranging from 0.2 to 43 m, which were observed during the 6 July–5 November 2018 period were analyzed. The results show thermocline deepening from 10 m at the beginning, to 16 m at the end of the observational period, where the latter corresponds to approximately one third of the lake depth. The pycnocline followed the same pattern, except that the deepening occurred throughout the entire period approximately 1 m above the thermocline. On average, thermocline deepening was 3–4 cm per day, while the maximum deepening (12.5 cm per day) coincided with the occurrence of internal seiches. Furthermore, the results indicate three different types of forcings on the lake surface, and two of these forcings have diurnal periodicity: (1) continuous heat fluxes and (2) occasional periodic stronger winds, while the (3) forcing corresponds to occasional nonperiodic stronger winds with along the basin-steady directions. Continuous heat fluxes (1) produced forced diurnal oscillations in the lake temperature within the first 5 meters of the lake throughout the entire observational period. Noncontinuous periodic stronger winds (2) resulted in occasional forced diurnal oscillations in the lake temperatures at depths from approximately 7 to 20 m. Occasional steady along-the-basin stronger winds (3) triggered both, baroclinic internal seiches with a principal period of 8.0 h, and, barotropic surface seiches with a principal period of 9 min. Lake currents produced by the surface seiches under realistic-topography conditions generated baroclinic oscillations of the thermocline region (at depths of 9–17 m) with periods corresponding to the period of surface seiches (≈ 9 min), which to our knowledge, has not been reported in previous lake studies. Finally, a simple multiple linear regression model of the near-surface temperature (0.2 m), which depends on the air temperature and wind speed, can only be used as a rough estimate of the daily mean lake temperature under weak wind and undisturbed air temperature pattern conditions.