For Lentinula edodes, its characteristic flavor is the key determinant for consumer preferences. However, the tissue-specific volatile flavor variations of the fruiting body have been overlooked. Here, we comprehensively investigated the volatile flavor profiles of different tissues, including the pileus skin, context, gill, and stipe of the fruiting body, of two widely cultivated L. edodes strains (T2 and 0912) using the gas chromatography–mass spectrometry (GC–MS) technique combined with a multivariate analysis. We show that the eight-carbon and sulfur compounds, which represented 43.2–78.0% and 1.4–42.9% of the total volatile emissions for strains 0912 and T2, respectively, dominated their volatile profiles. Compared with strain T2, strain 0912 had a higher total content of eight-carbon compounds but a lower total content of sulfur compounds in the fruiting body. The sulfur compounds represented 32.2% and 42.9% of the total volatile emissions for strains 0912 and T2, respectively. In contrast, they constituted only 1.4% in the stipes of strain 0912 and 9.0% in the skin of strain T2. The proportions of the predominant C8 compounds (1-octen-3-one, 1-octen-3-ol, and 3-octanone) and sulfur compounds (lenthionine, 1,2,4-trithiolane, dimethyl disulfide, and dimethyl trisulfide) changed depending on the tissues and strains. Using machine learning, we show that the prediction accuracy for different strains and tissues using their volatile profiles could reach 100% based on the highly diverse strain- and tissue-derived volatile variations. Our results reveal and highlight for the first time the comprehensive tissue-specific volatile flavor variations of the L. edodes fruiting body. These findings underscore the significance of considering strain and tissue differences as pivotal variables when aiming to develop products with volatile flavor characteristics.