A key consideration for evaluating climate projections is uncertainty in future radiative forcing scenarios. Although it is straightforward to monitor greenhouse gas concentrations and compare observations with specified climate scenarios, it remains less obvious how to detect and attribute regional pattern changes with plausible future mitigation scenarios. Here we introduce a machine learning approach for linking patterns of climate change with radiative forcing scenarios and use a feature attribution method to understand how these linkages are made. We train a neural network using output from the SPEAR Large Ensemble to classify whether temperature or precipitation maps are most likely to originate from one of several potential radiative forcing scenarios. Despite substantial atmospheric internal variability, the neural network learns to identify “fingerprint” patterns, including significant localized regions of change, that associate specific patterns of climate change with radiative forcing scenarios in each year of the simulations. We illustrate this using output from additional ensembles with sharp reductions in future greenhouse gases and highlight specific regions (in this example, the subpolar North Atlantic and Central Africa) that are critical for associating the new simulations with changes in radiative forcing scenarios. Overall, this framework suggests that explainable machine learning could provide one strategy for detecting a regional climate response to future mitigation efforts.