Human sensory systems are organized into processing hierarchies within cortex, such that incoming sensory information is analyzed and compiled into our vivid sensory experiences. Computations that are common to these sensory systems include the abilities to maintain enhanced focus on particular aspects of incoming sensory information (i.e., attention) and to retain sensory information in a short-term memory store after such sensory information is no longer available (i.e., working memory). In at least the auditory and visual systems, the necessary computational steps to create these experiences take place in cloverleaf clusters of cortical field maps (CFMs). The human auditory CFMs represent the spectral (i.e., tones) and temporal (i.e., period) aspects of sound, which are represented along the cortical surface as two orderly gradients that are physically orthogonal to one another: tonotopy and periodotopy, respectively. Knowledge of the properties of such CFMs is the foundation for understanding the specific sensory computations carried out in particular cortical regions. This chapter reviews current research into auditory nonverbal attention, auditory working memory, and auditory CFMs, and introduces the next steps to measure the effects of attention and working memory across the known auditory CFMs in human cortex using functional MRI.
2Across the cortical hierarchy, there is generally a progressive increase in the complexity of sensory computations from simple sensory stimulus features (e.g., frequency content) to higher levels of cognition (e.g., attention and working memory) [6,13,22]. CFM organization likely serves as a framework for integrating bottom-up inputs from sensory receptors with top-down attentional processing [12,17]. With the recent ability to measure AFMs in the core and belt regions of human auditory cortex along Heschl's gyrus (HG) using high-resolution functional magnetic resonance imaging (fMRI), the stage is now set for investigation into this integration of basic auditory processing with higher-order auditory attention and working memory within human AFMs (Figure 1) [5,12,15,23].This chapter first provides a brief history of research into models of auditory nonverbal attention and working memory, with comparisons to their visual counterparts. Next, we discuss the current state of research into AFMs within human auditory cortex. Finally, we propose directions of future research investigating auditory attention and working memory within these AFMs to illuminate how these higher-order cognitive processes interact with low-level auditory processing.
Attention and working memory in human audition
Models of attention and working memoryAttention, the ability to select and attend to aspects of the sensory environment while simultaneously ignoring or inhibiting others, is a fundamental aspect of human sensory systems (for reviews, see [24][25][26][27]). Given the limited resources of the human brain, attention allows for greater resources to be allocated to processing of important incoming senso...