Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objective: Medullary thyroid carcinoma (MTC) is a rare yet aggressive form of thyroid cancer comprising a disproportionate share of thyroid cancer-related mortalities, despite its low prevalence. MTC differs from other differentiated thyroid malignancies due to its heterogeneous nature, presenting complexities in both hereditary and sporadic cases. Traditional management guidelines, which are designed primarily for papillary thyroid carcinoma (PTC), fall short in providing the individualized care required for patients with MTC. In recent years, the sheer volume of data generated from clinical evaluations, radiological imaging, pathological assessments, genetic mutations, and immunological profiles has made it humanly impossible for clinicians to simultaneously analyze and integrate these diverse data streams effectively. This data deluge necessitates the adoption of advanced technologies to assist in decision-making processes. Holomics, which is an integrated approach that combines various omics technologies, along with artificial intelligence (AI), emerges as a powerful solution to address these challenges. Methods: This article reviews how AI-driven precision oncology can enhance the diagnostic workup, staging, risk stratification, management, and follow-up care of patients with MTC by processing vast amounts of complex data quickly and accurately. Articles published in English language and indexed in Pubmed were searched. Results: AI algorithms can identify patterns and correlations that may not be apparent to human clinicians, thereby improving the precision of personalized treatment plans. Moreover, the implementation of AI in the management of MTC enables the collation and synthesis of clinical experiences from across the globe, facilitating a more comprehensive understanding of the disease and its treatment outcomes. Conclusions: The integration of holomics and AI in the management of patients with MTC represents a significant advancement in precision oncology. This innovative approach not only addresses the complexities of a rare and aggressive disease but also paves the way for global collaboration and equitable healthcare solutions, ultimately transforming the landscape of treatment and care of patients with MTC. By leveraging AI and holomics, we can strive toward making personalized healthcare accessible to every individual, regardless of their economic status, thereby improving overall survival rates and quality of life for MTC patients worldwide. This global approach aligns with the United Nations Sustainable Development Goal 3, which aims to ensure healthy lives and promote well-being at all ages.
Background/Objective: Medullary thyroid carcinoma (MTC) is a rare yet aggressive form of thyroid cancer comprising a disproportionate share of thyroid cancer-related mortalities, despite its low prevalence. MTC differs from other differentiated thyroid malignancies due to its heterogeneous nature, presenting complexities in both hereditary and sporadic cases. Traditional management guidelines, which are designed primarily for papillary thyroid carcinoma (PTC), fall short in providing the individualized care required for patients with MTC. In recent years, the sheer volume of data generated from clinical evaluations, radiological imaging, pathological assessments, genetic mutations, and immunological profiles has made it humanly impossible for clinicians to simultaneously analyze and integrate these diverse data streams effectively. This data deluge necessitates the adoption of advanced technologies to assist in decision-making processes. Holomics, which is an integrated approach that combines various omics technologies, along with artificial intelligence (AI), emerges as a powerful solution to address these challenges. Methods: This article reviews how AI-driven precision oncology can enhance the diagnostic workup, staging, risk stratification, management, and follow-up care of patients with MTC by processing vast amounts of complex data quickly and accurately. Articles published in English language and indexed in Pubmed were searched. Results: AI algorithms can identify patterns and correlations that may not be apparent to human clinicians, thereby improving the precision of personalized treatment plans. Moreover, the implementation of AI in the management of MTC enables the collation and synthesis of clinical experiences from across the globe, facilitating a more comprehensive understanding of the disease and its treatment outcomes. Conclusions: The integration of holomics and AI in the management of patients with MTC represents a significant advancement in precision oncology. This innovative approach not only addresses the complexities of a rare and aggressive disease but also paves the way for global collaboration and equitable healthcare solutions, ultimately transforming the landscape of treatment and care of patients with MTC. By leveraging AI and holomics, we can strive toward making personalized healthcare accessible to every individual, regardless of their economic status, thereby improving overall survival rates and quality of life for MTC patients worldwide. This global approach aligns with the United Nations Sustainable Development Goal 3, which aims to ensure healthy lives and promote well-being at all ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.