“…While this review focuses on molecular catalysts which were specifically examined for electrochemical CO 2 reduction, secondary-sphere effects have been successfully harnessed in related catalytic processes, including thermal CO 2 hydrogenation (Himeda et al, 2004, 2005, 2007; Hull et al, 2012; Wang et al, 2012, 2013, 2014; Manaka et al, 2014; Suna et al, 2014; Cammarota et al, 2017), hydrogen evolution (Curtis et al, 2003; Henry et al, 2005, 2006; Wilson et al, 2006; Fraze et al, 2007; Jacobsen et al, 2007a,b; DuBois and DuBois, 2009; Gloaguen and Rauchfuss, 2009; Helm et al, 2011; Reback et al, 2013; Ginovska-Pangovska et al, 2014), hydrogen oxidation (Curtis et al, 2003; Henry et al, 2005, 2006; Wilson et al, 2006; Fraze et al, 2007; Jacobsen et al, 2007a,b; Dutta et al, 2013, 2014; Ginovska-Pangovska et al, 2014), formate oxidation (Galan et al, 2011, 2013; Seu et al, 2012), and oxygen reduction (Collman, 1977; Collman et al, 2004; Lewis and Tolman, 2004; Mirica et al, 2004; Fukuzumi, 2013; Ray et al, 2014; Fukuzumi et al, 2015; Nam, 2015; Sahu and Goldberg, 2016; Elwell et al, 2017; Hong et al, 2017; Sinha et al, 2019) reactions. In this review, we focus on how the mechanism of CO 2 reduction relates to the type of secondary-sphere effects employed in molecular systems.…”