Statistical properties of the reception angle have a significant impact on the choice of the antenna system patterns and decide on the received signal-processing methods. For angle of arrival in azimuth plane, comparative analysis of the empirical models and the approximation error evaluation are the purpose of this paper. Here, the presented analysis is focused on models such as the von Mises, modified Gaussian, modified Laplacian, and modified logistic. For each model, the approximation accuracy is determined with respect to measurement data for seven different propagation scenarios. The measures such as the least-squares error, difference of standard deviations, Kolmogorov-Smirnov statistic, and Cramer-von Mises statistic are used for evaluation of the approximation errors. Comparative analysis for four empirical models, differentiation of propagation environments, multi-criterial evaluation of approximation errors in significant degree fill a gap in the previous analysis presented in the literature. The obtained results show that the empirical models provide a better fit to the measurement data than the geometrical models, and the smallest errors of approximation are for the modified Laplacian and logistic distributions.