Software systems contain resilience code to handle those failures and unexpected events happening in production. It is essential for developers to understand and assess the resilience of their systems. Chaos engineering is a technology that aims at assessing resilience and uncovering weaknesses by actively injecting perturbations in production. In this paper, we propose a novel design and implementation of a chaos engineering system in Java called CHAOSMACHINE. It provides a unique and actionable analysis on exception-handling capabilities in production, at the level of try-catch blocks. To evaluate our approach, we have deployed CHAOSMACHINE on top of 3 large-scale and well-known Java applications totaling 630k lines of code. Our results show that CHAOSMACHINE reveals both strengths and weaknesses of the resilience code of a software system at the level of exception handling.• An empirical evaluation of CHAOSMACHINE on 3 realworld Java systems totaling 630k line of codes, containing 339 try-catch blocks executed by the considered production traffic. It shows the effectiveness of CHAOS-MACHINE to reveal both strengths and weaknesses of a software system's resilience at the exception-handling