Chaos Game Optimization-Hybridized Artificial Neural Network for Predicting Blast-Induced Ground Vibration
Shugang Zhao,
Liguan Wang,
Mingyu Cao
Abstract:In this study, we introduced the chaos game optimization-artificial neural network (CGO-ANN) model as a novel approach for predicting peak particle velocity (PPV) induced by mine blasting. The CGO-ANN model is compared with other established methods, including the particle swarm optimization-artificial neural network (PSO-ANN), the genetic algorithm-artificial neural network (GA-ANN), single ANN, and the USBM empirical model. The aim is to demonstrate the superiority of the CGO-ANN model for PPV prediction. Ut… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.