Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Currently, the global energy revolution in the direction of green and low-carbon technologies is flourishing. The large-scale integration of renewable energy into the grid has led to significant fluctuations in the net load of the power system. To meet the energy balance requirements of the power system, the pressure on conventional power generation units to adjust and regulate has increased. The efficient utilization of the regulation capability of controllable industrial loads and energy storage can achieve the similarity between renewable energy curves and load curves, thereby reducing the peak-to-valley difference and volatility of the net load. This approach also decreases the adjustment pressure on conventional generating units. Therefore, this paper proposes a two-stage optimization scheduling strategy considering the similarity between renewable energy and load, including energy storage and industrial load participation. The combination of the Euclidean distance, which measures the similarity between the magnitude of renewable energy–load curves, and the load tracking coefficient, which measures the similarity in curve shape, is used to measure the similarity between renewable energy and load profiles. This measurement method is introduced into the source-load-storage optimal scheduling to establish a two-stage optimization model. In the first stage, the model is set up to maximize the similarity between renewable energy and the load profile and minimize the cost of energy storage and industrial load regulation to obtain the desired load curve and new energy output curve. In the second stage, the model is set up to minimize the overall operation cost by considering the costs associated with abandoning the new energy sources and shedding loads to optimize the output of conventional generator sets. Through a case analysis, it is verified that the proposed scheduling strategy can achieve the tracking of the load curve to the new energy curve, reducing the peak-to-valley difference of the net load curve by 48.52% and the fluctuation by 67.54% compared to the original curve. These improvements effectively enhance the net load curve and reduce the difficulty in regulating conventional power generation units. Furthermore, the strategy achieves the full discard of renewable energy and reduces the system operating costs by 4.19%, effectively promoting the discard of renewable energy and reducing the system operating costs.
Currently, the global energy revolution in the direction of green and low-carbon technologies is flourishing. The large-scale integration of renewable energy into the grid has led to significant fluctuations in the net load of the power system. To meet the energy balance requirements of the power system, the pressure on conventional power generation units to adjust and regulate has increased. The efficient utilization of the regulation capability of controllable industrial loads and energy storage can achieve the similarity between renewable energy curves and load curves, thereby reducing the peak-to-valley difference and volatility of the net load. This approach also decreases the adjustment pressure on conventional generating units. Therefore, this paper proposes a two-stage optimization scheduling strategy considering the similarity between renewable energy and load, including energy storage and industrial load participation. The combination of the Euclidean distance, which measures the similarity between the magnitude of renewable energy–load curves, and the load tracking coefficient, which measures the similarity in curve shape, is used to measure the similarity between renewable energy and load profiles. This measurement method is introduced into the source-load-storage optimal scheduling to establish a two-stage optimization model. In the first stage, the model is set up to maximize the similarity between renewable energy and the load profile and minimize the cost of energy storage and industrial load regulation to obtain the desired load curve and new energy output curve. In the second stage, the model is set up to minimize the overall operation cost by considering the costs associated with abandoning the new energy sources and shedding loads to optimize the output of conventional generator sets. Through a case analysis, it is verified that the proposed scheduling strategy can achieve the tracking of the load curve to the new energy curve, reducing the peak-to-valley difference of the net load curve by 48.52% and the fluctuation by 67.54% compared to the original curve. These improvements effectively enhance the net load curve and reduce the difficulty in regulating conventional power generation units. Furthermore, the strategy achieves the full discard of renewable energy and reduces the system operating costs by 4.19%, effectively promoting the discard of renewable energy and reducing the system operating costs.
With the increasing application of Combined Heat and Power (CHP) units, Combined Heat and Power Economic Dispatch (CHPED) has emerged as a significant issue in power system operations. To address the complex CHPED problem, this paper proposes an effective economic dispatch method based on the Improved Artificial Hummingbird Algorithm (IAHA). Given the complex constraints of the CHPED problem and the presence of valve point effects and prohibited operating zones, it requires the algorithm to have high traversal capability in the solution space and be resistant to becoming trapped in local optima. IAHA has introduced two key improvements based on the characteristics of the CHPED problem and the shortcomings of the standard Artificial Hummingbird Algorithm (AHA). Firstly, IAHA uses chaotic mapping to initialize the initial population, enhancing the algorithm’s traversal capability. Second, the guided foraging of the standard AHA has been modified to enhance the algorithm’s ability to escape from local optima. Simulation experiments were conducted on CHP systems at three different scales: 7 units, 24 units, and 48 units. Compared to other algorithms reported in the literature, the IAHA algorithm reduces the cost in the three testing systems by up to USD 18.04, 232.7894, and 870.7461. Compared to other swarm intelligence algorithms reported in the literature, the IAHA algorithm demonstrates significant advantages in terms of convergence accuracy and convergence speed. These results confirm that the IAHA algorithm is effective in solving the CHPED problem while overcoming the limitations of the standard AHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.