Chaotic Diffusion of Dissipative Solitons: From Anti-Persistent Random Walk to Hidden Markov Models
Tony Albers,
Jaime Cisternas,
Günter Radons
Abstract:In previous publications, we showed that the incremental process of the chaotic diffusion of dissipative solitons in a prototypical complex Ginzburg-Landau equation, known, e.g., from nonlinear optics, is governed by a simple Markov process leading to an Anti-Persistent Random Walk of motion or by a more complex Hidden Markov Model with continuous output densities. In this article, we reveal the transition between these two models by studying the soliton dynamics in dependence on the main bifurcation parameter… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.