2010
DOI: 10.1016/j.rcim.2009.05.003
|View full text |Cite
|
Sign up to set email alerts
|

Chaotic particle swarm optimization for assembly sequence planning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
81
0
3

Year Published

2011
2011
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 152 publications
(84 citation statements)
references
References 15 publications
0
81
0
3
Order By: Relevance
“…There have been a significant number of research works about optimisation of the assembly scheduling for traditional production systems. This class of optimisation problems has been solved by various approaches, such as heuristic (Andrés et al 2008;Kim et al 1996;Al-Anzi and Allahverdi 2007;Allahverdi and Al-Anzi 2009;Sung and Kim 2008;Koulamas and Kyparisis 2001), particle swarm optimisation (Dong et al 2012;Wang and Liu 2010;Hamta et al 2013;Allahverdi and Al-Anzi 2006), mixed integer programming (Ozturk et al 2010;Lin and Liao 2012;Terekhov et al 2012;Sawik 2004), genetic algorithm (Wong et al 2009;Marian et al 2003Marian et al , 2006Yolmeh and Kianfar 2012;Celano et al 1999;Dini et al 1999), Taguchi method (Chen et al 2010), dynamic programming (Jiang et al 1997;Zhang et al 2005;Yee and Ventura 1999), neural networks (Chen et al 2008;Hong and Cho 1995), multi-agent evolutionary algorithm (Zeng et al 2011), simulated annealing (Milner et al 1994), etc. In general, all of the works done so far deal with two main optimisation issues: assembly sequence and assembly resource location.…”
Section: Literature Reviewmentioning
confidence: 99%
“…There have been a significant number of research works about optimisation of the assembly scheduling for traditional production systems. This class of optimisation problems has been solved by various approaches, such as heuristic (Andrés et al 2008;Kim et al 1996;Al-Anzi and Allahverdi 2007;Allahverdi and Al-Anzi 2009;Sung and Kim 2008;Koulamas and Kyparisis 2001), particle swarm optimisation (Dong et al 2012;Wang and Liu 2010;Hamta et al 2013;Allahverdi and Al-Anzi 2006), mixed integer programming (Ozturk et al 2010;Lin and Liao 2012;Terekhov et al 2012;Sawik 2004), genetic algorithm (Wong et al 2009;Marian et al 2003Marian et al , 2006Yolmeh and Kianfar 2012;Celano et al 1999;Dini et al 1999), Taguchi method (Chen et al 2010), dynamic programming (Jiang et al 1997;Zhang et al 2005;Yee and Ventura 1999), neural networks (Chen et al 2008;Hong and Cho 1995), multi-agent evolutionary algorithm (Zeng et al 2011), simulated annealing (Milner et al 1994), etc. In general, all of the works done so far deal with two main optimisation issues: assembly sequence and assembly resource location.…”
Section: Literature Reviewmentioning
confidence: 99%
“…However, when using TTs for generating assembly sequences, only the precedence relations need to be clarified before creating assembly sequences with minimal rotation of parts arranged successively. Compared with the method using the precedence relations of the parts only for generating assembly sequences (Jun et al, 2005;Martinez et al, 2009;Wen et al, 2008Wen et al, , 2010Kai et al, 2008;Marian et al, 2006;Young et al, 2009;Wang et al, 2010;Qiang, 2009;Hongbo et al, 2009;Biswal et al, 2009;Zhou et al, 2008;Shanshan et al, 2008;Hwai et al, 2007;Ostrovsky et al, 2006;Liverani et al, 2006), the proposed method intentionally shows the assembly between two parts with a tournament style method, and the assembly sequences shown are visually accessible.…”
Section: Procedures Of Selectively Gen-erating Assembly Sequences Usinmentioning
confidence: 99%
“…There are many studies on assembly sequence planning (Jun et al, 2005;Martinez et al, 2009;Wen et al, 2008Wen et al, , 2010Kai et al, 2008;Marian et al, 2006;Young et al, 2009;Wang et al, 2010;Qiang, 2009;Hongbo et al, 2009;Biswal et al, 2009;Zhou et al, 2008;Shanshan et al, 2008;Hwai et al, 2007;Ostrovsky et al, 2006;Liverani et al, 2006). In this research area, it is common to generate assembly sequences using a BOM method, a genetic algorithm method or a graph theory-based method.…”
Section: Introductionmentioning
confidence: 99%
“…Microlevel concerns are typically respected as pieces of advice in form of special constraints, giving up this way the completeness and sometimes even the satisfiability of the planning problem. All this requires custom-tailored (re)solution methods [5][12] [13].…”
Section: Introductionmentioning
confidence: 99%