2017
DOI: 10.1007/978-3-319-50249-6_29
|View full text |Cite
|
Sign up to set email alerts
|

Chaotic System Modelling Using a Neural Network with Optimized Structure

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
4

Relationship

2
6

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 59 publications
0
4
0
Order By: Relevance
“…Machine Learning techniques, especially unsupervised algorithms, have been broadly adopted to generate response surfaces because they have the power to model rough surfaces without requiring much prior knowledge of the target surface. Neural networks are nowadays undoubtedly the most widespread approach for such task, presenting impressive results on extremely challenging scenarios, such as chaotic systems (Lamamra et al 2017) and processes strongly governed by differential equations (Meng et al 2020). They are not a panacea, though.…”
Section: 24mentioning
confidence: 99%
“…Machine Learning techniques, especially unsupervised algorithms, have been broadly adopted to generate response surfaces because they have the power to model rough surfaces without requiring much prior knowledge of the target surface. Neural networks are nowadays undoubtedly the most widespread approach for such task, presenting impressive results on extremely challenging scenarios, such as chaotic systems (Lamamra et al 2017) and processes strongly governed by differential equations (Meng et al 2020). They are not a panacea, though.…”
Section: 24mentioning
confidence: 99%
“…It focuses on the process that governs how the components and system change over time. In the literature, there are many applications of dynamic modeling in machine learning, deep learning, computational intelligence, control systems, robotics, sensor network and cyber-security (Ben Smida et al, 2018;Lamamra et al, 2017;Grassi et al, 2017;Mohanty et al, 2021 ;Ghoudelbourk et al, 2022Ghoudelbourk et al, , 2021Ghoudelbourk et al, , 2016Mekki et al, 2015;Dudekula et al, 2023 ;Hussain et al, 2023 ;El-Shorbagy et al, 2023 ;Ramadan et al, 2022 ;Ashfaq et al, 2022a,b;Waleed et al, 2022 ;Jothi et al, 2022Jothi et al, , 2020Jothi et al, , 2019Jothi et al, , 2013Lavanya et al, 2022 ;Inbarani et al, , 2018Inbarani et al, , 2014Inbarani et al, , 2015Boulmaiz et al, 2022 ;Fouad et al, 2021 ;Elfouly et al, 2021 ;Khan et al, 2021 ;Aslam et al, 2021 ;Nasser et al, 2021 ;Hussien et al, 2020 ;Kumar et al, 2019Kumar et al, , 2015aMjahed et al, 2020 ;Banu et al, 2017 ;Ben Abdallah et al, 2016Emary et al, 2014a,b;Anter et al, 2015Anter et al, , 2013Elshazly et al, 2013a,b ;Azar et al, 2013…”
Section: Modeling Of the Suggested Approachmentioning
confidence: 99%
“…Several inspiring approaches, such as optimal control, nonlinear feedback control, adaptive control, sliding mode control, nonlinear dynamics, chaos control, chaos synchronization control, fuzzy logic control, fuzzy adaptive control, fractional order control, and robust control, as well as their integrations, have been proposed (Fekik et al, 2022(Fekik et al, . 2021a(Fekik et al, ,b,c, 2020a(Fekik et al, , 2019(Fekik et al, , 2018aDaraz et al, 2021;Pilla et al, 2021a;Abdul-Adheem et al, 2021Liu et al, 2020;Bouchemha et al, 2021;Gorripotu et al, 2021;Drhorhi et al, 2021 ;Alimi et al, 2021 ;Kumar et al, 2021 ;Acharyulu et al, 2021;Hamiche et al, 2021;Mittal et al, 2021;Pham et al, 2021Pham et al, , 2018Pham et al, , 2017aSambas et al, 2021a,b;Khan et al, 2020a,b;Khennaoui et al, 2020a,b;Kammogne et al, 2020;Alain et al, 2020Alain et al, , 2019Alain et al, , 2018Ouannas et al, 2021Ouannas et al, , 2020aOuannas et al, ,b,c,d,e,f, 2019aOuannas et al, ,b,c, 2017aOuannas et al, ,b,c,d,e,f,g,h,i,j,k, 2016Ammar et al, 2019;Radwan et al, 2018;Meghni et al, 2017aMeghni et al, ,b, 2018Singh et al, 2018aSingh et al, ,b,c, 2017Ben Smida et al, 2018;Lamamra et ...…”
Section: Design Of the Proposed Controlmentioning
confidence: 99%