High-Chromium Ferritic and Martensitic Steels for Nuclear Applications 2001
DOI: 10.1520/mono10031m
|View full text |Cite
|
Sign up to set email alerts
|

Chapter 16-Fatigue and Fatigue Crack Growth

Abstract: High-temperature components in a steam power plant are subject during service to fatigue straining due to thermal cycling or a combination of thermal and mechanical deformation in which the strain cycle includes a hold period. The first wall in a D-T tokamak fusion system will also undergo thermomechanical fatigue (TMF) as a result of the mechanical and electromagnetic loadings and the cyclic strains induced by the temperature changes during the plasma burn and off-burn periods [1,2]. Two approaches may be ado… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 54 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?