1996
DOI: 10.1063/1.531691
|View full text |Cite
|
Sign up to set email alerts
|

Character states and generator matrix elements for Sp(4)⊃SU(2)×U(1)

Abstract: A new set of polynomial states (to be called character states) are derived for Sp (4) reduced to its SU (2) × U (1) subgroup, and the relevant generator matrix elements are evaluated for generic representations (a, b) of Sp(4). (The degenerate representations (a, 0) and (0, b) were treated in our previous work and are also given in this paper). The group-subgroup in question is that of the seniority model of nuclear physics.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

1999
1999
2021
2021

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…С одной стороны, именно в этом случае удается вывести явную формулу для функции, соответствующей базисному вектору Гельфанда-Цетлина-Желобенко, и ответ при этом достаточно хороший и нетривиальный. С другой стороны, из всех симплектических алгебр именно sp 4 и ее представления составляют особенный интерес для детального исследования как с точки зрения математики [9], [10] (как наиболее простой представитель серии C), так и с точки зрения физики [11], [12].…”
Section: и гипергеометрические функцииunclassified
“…С одной стороны, именно в этом случае удается вывести явную формулу для функции, соответствующей базисному вектору Гельфанда-Цетлина-Желобенко, и ответ при этом достаточно хороший и нетривиальный. С другой стороны, из всех симплектических алгебр именно sp 4 и ее представления составляют особенный интерес для детального исследования как с точки зрения математики [9], [10] (как наиболее простой представитель серии C), так и с точки зрения физики [11], [12].…”
Section: и гипергеометрические функцииunclassified
“…From one hand in this case we manage to derive a fomula for a function corresponding to a Gelfand-Tsetlin-Zhelobenko vector and the answer is both nontrivial and quite simple. From the other hand the algebra sp 4 is of special interest among symplectic algebras from both mathimatical point of view (as the simplest example of the series C) [9], [10] and also form the point of view of physics [11], [12].…”
Section: Introductionmentioning
confidence: 99%