To provide sufficient lift during takeoff and landing, large aircraft are equipped with complicated high-lift devices. The use of simple flaps coupled with active flow control (AFC) can achieve lift improvement while reducing mechanical structure and weight. The present study focuses on verifying the feasibility and effectiveness of simple flaps combined with sweeping jet flow control. An experimental study on the AFC of flaps, using sweeping jets, was carried out using a NASA SC(2)-0410 supercritical airfoil wind-tunnel model at Re = 2.0 × 105 (with velocity V = 10 m/s). In the experiment, the wing angle of attack (α) ranged from 3 to 18°, and the flap deflection angle (δ) ranged from 0 to 30°; the aerodynamic characteristics and surface pressure characteristics of the wing at typical working conditions were analyzed. Using sweeping jets to control the flow on the flaps, the momentum coefficients (for three actuator groups) of the jet are 0.8%, 3.6%, and 8.2%, respectively, and the maximum lift coefficient was increased by approximately 33%. The influence of the sweeping jet flow rate on the aerodynamic performance of the airfoil is analyzed. There are two main reasons for the lift coefficient increase caused by sweeping jet flow: an extra suction peak near the flap and a suction peak increase near the leading edge area caused by induced flow.