We report full characterization of the intensity and phase of 10-fs optical pulses using second-harmonic-generation frequency-resolved-optical-gating (SHG FROG). We summarize the subtleties in such measurements, compare these measurements with predicted pulse shapes, and describe the implications of these measurements for the creation of even shorter pulses. We also discuss the problem of validating these measurements. Previous measurements of such short pulses using techniques such as autocorrelation have been difficult to validate because at best incomplete information is obtained and internal self-consistency checks are lacking. FROG measurements of these pulses, in contrast, can be validated, for several reasons. First, the complete pulse-shape information provided by FROG allows significantly better comparison of experimental data with theoretical models than do measurements of the autocorrelation trace of a pulse. Second, there exist internal self-consistency checks in FROG that are not present in other pulse-measurement techniques. Indeed, we show how to correct a FROG trace with systematic error using one of these checks.