Neuroblastoma (NB) is a neuroectodermal embryonic cancer that originates from primordial neural crest cells, and amongst pediatric cancers with high mortality rates. NB is categorized into high-, intermediate-, and low-risk cases. A significant proportion of high-risk patients who achieve remission have a minimal residual disease (MRD) that causes relapse. Whilst there exists a myriad of advanced treatment options for NB, it is still characterized by a high relapse rate, resulting in a reduced chance of survival. Disialoganglioside (GD2) is a lipo-ganglioside containing a fatty acid derivative of sphingosine that is coupled to a monosaccharide and a sialic acid. Amongst pediatric solid tumors, NB tumor cells are known to express GD2; hence, it represents a unique antigen for subclinical NB MRD detection and analysis with implications in determining a response for treatment. This article discusses NB MRD expression and analytical assays for GD2 detection and quantification as well as computational approaches for GD2 characterization based on high-throughput image processing and genomic data analysis.