By means of first-principles density-functional calculations, we studied the surface energy of a nonstoichiometric MgO(1-11) slab, the interfacial energy and interfacial bonding characteristics of Mg-terminated and O-terminated Mg/MgO(1-11) interfaces with three stacking-site (TOP, HCP and FCC sites) models, and the effect of the thickness of Mg films on the O-terminated MgO(1-11) surface. The results indicate that the surface energies of the nonstoichiometric MgO(1-11) slab and interfacial energies of Mg/Mg(1-11) interface depend on Mg chemical potential. We found that the Mgterminated MgO(1-11) surface is more stable than the O-terminated MgO(1-11) surface at high Mg chemical potential, and Mg/MgO(1-11) with FCC stacking-site model is the most stable configuration in the Mg/MgO(1-11) interfaces. The results of the electronic structure reveals that the interfacial bonding of Mg-terminated interface with FCC site model mainly consists of metallic bond and of the O-terminated interface with FCC site model is mainly ionic with a small degree of σ-type covalent bond. Although the interfacial energy of Mg-terminated Mg/MgO interface with FCC stacking-site model is slightly higher than that of O-terminated Mg/MgO interface, the molten Mg would epitaxially grow on the FCC sites of the Mg-terminated MgO(1-11) surface because of the high evaporation pressure of Mg at high temperature.