Abstract. For mechanical tests of brazed stainless steel joints, the local deformation behaviour within the small area of the brazing seam is a major concern, because local strains cannot be detected with standard mechanical extensometers. The current study allows a fundamental comprehension of the gauge length influence on the strain measurements of brazed joints with smooth and notch-containing surfaces, under quasistatic and cyclic loadings. Therefore, the optical measurement technique of digital image correlation (DIC) is used within tensile and fatigue tests of brazed AISI 304L/BAu-4 joints in an as-received and pre-corroded condition. A triggered image acquisition of the DIC system is successfully applied to evaluate the local ratcheting fatigue behaviour in the area of the brazing seam at a frequency of 10 Hz. The gauge length influence, analysed in the range of 0.5 to 12.5 mm, is more pronounced with increasing tensile and fatigue stresses and is significantly enhanced for notch-containing surfaces. Instrumented load increase tests with strain, electrical, magnetic and temperature measuring techniques have proven to be appropriate to estimate fatigue properties of the brazed joints with a deviation of 4%. Fatigue and corrosion fatigue damage mechanisms are evaluated by using scanning electron microscopy with secondary and back-scattered electron detectors.