We study the eigenvalues of the unique connected anti-regular graph A n . Using Chebyshev polynomials of the second kind, we obtain a trigonometric equation whose roots are the eigenvalues and perform elementary analysis to obtain an almost complete characterization of the eigenvalues. In particular, we show that the intervalcontains only the trivial eigenvalues λ = −1 or λ = 0, and any closed interval strictly larger than Ω will contain eigenvalues of A n for all n sufficiently large. We also obtain bounds for the maximum and minimum eigenvalues, and for all other eigenvalues we obtain interval bounds that improve as n increases. Moreover, our approach reveals a more complete picture of the bipartite character of the eigenvalues of A n , namely, as n increases the eigenvalues are (approximately) symmetric about the number − 1 2 . We also obtain an asymptotic distribution of the eigenvalues as n → ∞. Finally, the relationship between the eigenvalues of A n and the eigenvalues of a general threshold graph is discussed.2000 Mathematics Subject Classification. Primary 05C50, 15B05; Secondary 05C75, 15A18.